

[image: C:\xampp\htdocs\elearning\exam\includes\image\logo_ok-removebg-preview.png]


Promuex Inc. (Canada) Global Professional Certificate. 

"Preparing for the Promuex Inc. Global Professional Certificate: Essential Knowledge and Skills Checklist"
Overview: The Promuex Inc. (Canada) Global Professional Certificate recognizes expertise across specialized fields like AI, cybersecurity, healthcare, and finance. To excel, you’ll need foundational skills, knowledge of industry tools, and practical experience. Here’s what to focus on before certification:
Instruction plan for Game Development
1. Learning Objectives
By the end of this course, learners will:
· Develop Foundational Knowledge in Game Development: Understand key game development concepts, navigation in Unity and Unreal, and the essential workflows of game production.
· Create Fully Functional 2D Games: Build and program 2D games, mastering character control, scene design, and user interaction within a 2D environment.
· Understand VR and AR Development: Learn core VR and AR principles, device setup, and user interaction in immersive environments to create engaging experiences.

2. Course Structure
Module 1: Introduction to Game Development (Unity, Unreal Engine)
· Content:
· Getting Started with Game Engines:
· Unity Overview: Detailed navigation through the Unity interface, asset import, and project settings. Introduction to C# scripting basics, using the inspector, and prefab system for reusing game objects.
· Unreal Engine Overview: Navigating Unreal’s interface, project settings, asset management, and the Blueprint visual scripting system. Brief intro to Unreal’s C++ scripting for more advanced programming.
· Basic Game Development Concepts:
· Game loop, rendering pipeline, physics, and how they work in Unity and Unreal.
· Understanding and setting up object-oriented programming (OOP) in game scripting, including classes, inheritance, and encapsulation.
· Working with Game Objects and Components:
· Unity: Using GameObjects and components to control movement, physics, and collisions. Introducing Unity’s physics engine for realistic movement and collision responses.
· Unreal Engine: Setting up actors, pawns, and character controllers. Using the Blueprint system to manage object behaviors, physics, and interactions without code.
· Basic Gameplay Mechanics:
· Setting up player movement and controls, implementing basic interactions with game objects (e.g., opening doors, picking up items).
· Working with UI elements in both Unity and Unreal (e.g., health bars, score counters, and main menu navigation).
· STAR Example:
· Situation: A developer wants to create a simple 3D game prototype where a player can move and interact with objects.
· Task: Use Unity or Unreal Engine to create a basic 3D environment with player movement, interaction, and basic physics.
· Action: Built a 3D scene, scripted player controls using Unity’s C# scripting and Unreal’s Blueprints, and added interactive objects with physics.
· Result: Created a fully functional prototype with basic mechanics and interactions, allowing the player to explore the environment.
· Assessment: Build a basic 3D scene with player movement, object interaction, and UI elements (e.g., a health bar) using either Unity or Unreal.
Module 2: 2D Game Development
· Content:
· Introduction to 2D Game Design:
· Overview of 2D game genres (platformers, puzzles, shooters) and their common mechanics.
· Asset preparation: Using sprite sheets, pixel art, and creating animations.
· Creating and Managing 2D Assets:
· Importing sprites and creating animations in Unity (Animator window) and Unreal.
· Working with sprite sheets for complex animations, designing backgrounds, and applying lighting effects.
· Building Game Mechanics:
· Programming basic character movement (e.g., walk, jump), collisions, and player health systems.
· Setting up game logic: Writing scripts for scoring, collecting items, and interacting with objects in the game world.
· Understanding basic physics for 2D games: Implementing gravity, bounce, and collision detection.
· Sound Design and Effects:
· Adding background music and sound effects to enhance player experience.
· Setting up sound triggers for specific actions (e.g., collecting an item, hitting an obstacle).
· UI and Level Design:
· Designing user interfaces with score counters, health displays, and level transitions.
· Using tilemaps for level design in platformers, creating obstacles, and placing enemy characters.
· STAR Example:
· Situation: A student wants to create a 2D platformer where the player can jump, collect coins, and avoid obstacles.
· Task: Use Unity to build a 2D game with animated characters, collectible items, and basic mechanics.
· Action: Imported sprites, set up player animations, scripted movement and collision detection, and added a score counter.
· Result: Produced a playable 2D platformer with smooth character movement, scoring system, and sound effects for an immersive experience.
· Assessment: Develop a 2D game in Unity or Unreal, including character movement, animations, scoring, and basic obstacles.
Module 3: Virtual Reality (VR) and Augmented Reality (AR) Basics
· Content:
· Introduction to VR and AR Technologies:
· Differences between VR and AR, industry applications, and key devices (Oculus Rift, HTC Vive for VR; AR-enabled smartphones for AR).
· Hardware and software requirements, including headset setup and development environments.
· Setting Up a VR or AR Project:
· Configuring Unity or Unreal for VR (Oculus SDK, SteamVR) and AR (AR Foundation for Unity).
· Setting up camera controls for immersive experiences in VR and AR.
· Creating Basic VR Interactions:
· Implementing user gaze, hand gestures, and motion controls.
· Working with VR UI elements to make HUDs and interactive menus that respond to user gaze or controller inputs.
· Building Simple AR Experiences:
· Creating AR applications with Unity’s AR Foundation for placing 3D objects in real-world environments.
· Tracking and mapping surfaces, working with AR cameras, and configuring lighting for realistic effects.
· Testing and Deploying VR/AR Applications:
· Testing VR on devices like Oculus Quest and deploying AR applications to Android and iOS devices.
· Understanding platform requirements and publishing VR/AR applications to app stores.
· STAR Example:
· Situation: A design team wants to create an AR app that allows users to visualize products (e.g., furniture) in their real space.
· Task: Use Unity with AR Foundation to build an app that allows users to place 3D models in real-world environments through AR.
· Action: Configured AR Foundation, imported 3D furniture models, and programmed object placement based on touch input.
· Result: Created an AR app prototype allowing users to visualize how furniture would look in their room, enhancing customer experience.
· Assessment: Create a VR or AR application with basic interaction, such as object manipulation or user movement, and deploy it on compatible devices.
Module 4: Capstone Project
· Objective: Apply game development, 2D and 3D skills, or VR/AR knowledge to create a functional game or immersive experience.
· Requirements:
· Design a complete game (2D or 3D) with multiple levels or an immersive VR/AR experience.
· Implement key gameplay elements (e.g., player controls, animations, scoring) and add UI components.
· Include basic sound design, lighting effects, and, for VR/AR projects, intuitive controls for user interaction.
· Expected Outcomes: Demonstrate the ability to conceptualize, design, and develop a fully functional prototype, presenting a well-rounded project with interactive and visual elements.
· Evaluation: Final presentation, including a live demonstration and a project report detailing design choices, challenges, and technical solutions.

3. Support Resources
· Core Readings and Tutorials:
· Unity Basics:
· Unity Learn - Access beginner-to-advanced tutorials on Unity, including 2D and 3D game development.
· Brackeys YouTube Channel - Video tutorials on Unity game mechanics, character movement, and UI.
· Unreal Engine Basics:
· Unreal Online Learning - Tutorials on Unreal Engine basics, Blueprints, and C++ for game development.
· Unreal Engine Documentation - Comprehensive documentation on Unreal Editor, scripting, and assets.
· 2D Game Development:
· 2D Game Kit by Unity - A project-based introduction to 2D game mechanics in Unity.
· GameDev.tv - Paid courses on 2D game design and asset creation in Unity and Unreal.
· VR and AR Basics:
· Unity VR Development - Basics of VR development in Unity.
· AR Foundation Documentation - Guide to using AR Foundation for AR app development.
· Hands-on Practice and Labs:
· Unity Labs: Experiment with sample projects, including 2D platformers and 3D prototypes, available on Unity Learn.
· Unreal Engine Labs: Practice Unreal’s Blueprint system and build simple gameplay mechanics without code.
· VR Labs: Use Oculus Rift, HTC Vive, or similar devices to test immersive environments and VR interactions in Unity.
· AR Labs: Create AR scenes and deploy them on AR-compatible devices like Android or iOS, using Unity’s AR Foundation.
· Recommended Tools and Applications:
· Unity Asset Store and Unreal Marketplace: Access to a variety of free and paid assets for game development.
· Blender (3D Asset Creation): Free software for creating custom 3D models for games.
· VR/AR Hardware: Oculus Rift or HTC Vive for VR projects, and smartphones with ARKit or ARCore support for AR testing.
· Online Communities and Forums:
· Unity and Unreal Forums: Unity Forums and Unreal Engine Community for troubleshooting and collaboration.
· Game Development Communities: r/gamedev on Reddit, GameDev.net - communities for networking, advice, and resources.
· VR and AR Development Forums: Oculus Developer Forum and AR Foundation GitHub Community.
This instructional plan provides a comprehensive, detailed approach to game development, covering practical applications, immersive experiences, and industry tools in Unity, Unreal Engine, VR, and AR, with STAR-based real-world examples and support resources.
[bookmark: _GoBack]
Promuex Inc. Canada (https://promuex.ca/)

image1.png




image2.png




